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C/_'TER I

INTRODUCTION

I.i Motivation and Rc!evance of Renor_ In April of 1874 the National

Aeronautics and Space Adminis%mation conducted a high alti%_/de balloon

expepiment called LACATE (Lower Atmosphere Composition and Temper_tuDe

Experin_,nt) which employed an infr_ed radiometeP to sense remotely

vertical profiles of the concentrations of selected atmospheric trace

constituents and tempemature. The constituents were measured by invez_-

ing infrared radiance profile of the earth's horizon. The _adiometem line

of sight was scanned ver_ically across the horizon a% approximately 0.25°

per Second, requiming 30 seconds %o acquire a complete radiance profile.

The specifications required that the relative vertical position of

the data points making up a profile be known %o approximately 30 arc

seconds. The general description of the balloon system fop accQmplishing

the mission is given in _eference (1), refer figures I.i-i and 1.1-2.

In order %o fix %he orientation of %he line of sigh% of %he

radiometer, it is necessary %o be.able to determine t/_econfiEuration of

the platform in space, i.e. the attitude of the system. This can be accom-

plished by simulating the balloon system and using the Eyro output in

conjunction with a pamametem estimation process. Simulation of the balloon

system requimes a mathematical model plus analysis of %he model. The

required mthematical model has almeady been developed fop use with the

system simulation process and the details ar_ desopibed in reference (1)

pages 8-38. The attitude of the balloon system can be detePmined once the

initial conditions; i.e. the initial state, is known,

i.2 Objective of the Repor_ The main objective of this r_port will be to

develop a process to det_e the unknown initial state pamameters by

employinF, the output of the system mathematical model in conjunction with
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the output obtained fr_n the inst-rumentation system. This system consisted

of three orthogonally oriented rate Eyros and maEnetometer which were

fixed to the balloon platform. The development of this process involves

2 major steps. First, a parameter determination process must be developed

which solves for the unknown initial state pamameters of the system which,

in turn, give the best fit to the data obtained from the ins_tation

system. Second, a simulation process must be developed for computing

the state of the balloon system which can then be compared with the

actual state of the system.

The body of this reDort consists of 2 major parts. The fi?st part

discusses the attitude determination process in general. The details of

this part include

(i) System Simulation Discussion of the method of solution and

computation of the output of interest (i.e. angular velocity components alon E

the platfor_ axis).

(ii) Ccmputation of System Natural Frequencies. Discussion of a

method for solvin E system eigenvalues.

(iii) Optimization Technique. Discussion of the Hooke and Jeeves

direct search method.

(iv) Vemifieation Process. Discussion of a method for verifiuation of

the attitude determination process.

In the second part of the repor_ all the numerical data and results are

presented and discussed.
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CNAFI'ER II

ATTITUDE DETEP_4INATION PROCESS

2.1 Introduction

The attitude (state) of the balloon system can be determined as a

function of time if (a) a method for simulating the motion of the system

is available and (b) the initial state is known. The system ,,-Dtion can

be simulated c,nce the system model is determined. The initial state can

then be obtained by fitting the system motion (_,s measured by sensors) to

the corresponding output predicted by the mathematical model. In the case

of the LACATE expemiment the sensors consisted of three oz_thogonally

oriented rate 8yros and a magnetometer all _ounted on the res_ pl_t-

form. The initial state was obtained by fitting the angular velocity

components measured with the Eyros to the cors_esponding values obtained

from the solution of the math model.

A block diasram illustPating the attitude detezT_nation process

employed fore the LACATE experiment is shown in figure 2.1-1. The process

consists of three essential pacts; i.e., a process fop simulating the balloon

system (block I), an instrumentation system (block 2) for measuring the

output, and a parameter estimation process (block 3) for systematically

and efficiently solving the initial state. A more detailed discussion of

each of these parts is presented below.

2.2 System Simulation Process

The main steps in the system simulation process are shown in the block

diagPam of figure 2.2-1. They consist of (a) development of a system

model to predict state (block i), (b) solution of the model (block 2) and

(c) developing a math model for computin S the angular velocity components

of the research platform. Each of these steps will be discussed in E/_ate_

detail below.
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,_ystem math model A system _th model must be obta._ned which enables

one to predict the motion of the system at float altitude sSnce all for_s

of output (e.g. angulaP velocity_ tension in the cables_ etc.) can be

determined once this is known. This motion is very complex and involves

various types of oscillation J]]cluding bounee_ pendulation and spin.

Mor_over_ the complexity of the motion is increased with increasing number

of subsystems.

The math model of the balloon system is complicated primarily by the

two important factors. They are as follows:

(a) the balloon itself is a distributed parameter system which has

motion in an infinite fluid media. Hence, it is necessary to first

idealize it as an equivalent Pigid body in ordeP to develop a lumped parameteP

model fox the entire system.

(b) The balloon system is subjected to nondeter_/nis%ic wind gusts

which _esult in forces actin_ externally on the system. At the present

time very little is known about the nature of these gusts.

The exact dynamic model fox the balloon itself consists of the

equations of motion fox the solid (i.e. balloon fabric) and the fluid

dynamic equations. These equations are coupled through the boundary condi-

tions which must be satisfied at the interface of the solid and fluid

media. The resulting model is e_ly complex and consists of a system

of coupled partial differential equations. The system model is simplified

by treating the balloon as a lumped parameter (Pigid body) element. This

is accomplished by developing approximate expressions for the _ynamic

for_es and torques whic/l result due to the interaction between %he balloon

and fluid media. These forces and torques are then treated as extel_nal

reactions on the solid system.

A linear systems model which includes the effect of the aerodynamic

reactions has been developed (3) by neglecting the effect of second o_der
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terms. An equivalent for_ of this model which involves only the pendulation

angles in two oz,thogonally oriented planes is given as follows

_+A_= 5 , 2.2-i

+ A_ _ 5 , and 2.2-2.'

G0,where 2.2-3
3

°ll

= 82 I ' 2.2-4

e i

3j

el,

_2

_3

2.2-5

$i = pendulation angles in two orthogonally oriented

planes, and

A =m

all a12 al3

a21 a22 a23

a31 a32 a33

. 2.2-6

The elements aij are defined in terms of the system parameters in reference

(3). The pendulation angles 8 i and _i and the .spin angle _.areillustrated

in flq_re 2.2-2 and figure 2.2-3.
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Solution of System Model,

by assu_inz the following for_ fc,r

The solution to equation 2.2-1 can be obtained

; i.e.

= sin 2.2-7

Substitution in to equation 2.2-I yields the following eigenvalue problem,

i,e,

AX = 92_:, where 2.2-8

Xi(i = I, 2, 3) =

Xli

X2i

X3i

are the eigenvectors and

_i(i = 1,2,3) are the eigenvalues.

Equation 2.2-8 can be solved nlmmrically on the computer. A listing of the

fortran progrenm employed to solve this equation for the particular problem

under study is given in appendix A.

The solution to equation 2.2-2 is obtained in the Same waF and yields

the identical eigenvalue problem. The solution for equation 2.2-3 is

easily obtained by integrating the equation twice with respect to time (t).

The final closed form solution for e, _ and ¢3 is given as

e(t) = Xl(Cl sin nit + c 2 cos nit)

+ _2(o3 sin _2t + c4 cos _2t)

+ _3(c5 sin _3t + c6 cos _3t) ,
2.2-9
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_(t) = XI(C7 sin _t + c 8 cos _I t)

+ X2(Q9 sin _2 t + el0 cos _2 t)

+ X3(Cll sin _3 t + c12 cos _3 t) , and 2.2-10

#3(t) = at + #3(to) , where 2.2-11

cj(J = 1,2,...,12) = unknown constants which are determined

from the initial states; i.e. 8(to),

(to), 8(to) and _Cto),

a = constant rate of spin, and

#3(to) = initial spin displacement.

Computation Jf Balloon An@ular Velocities. The relationship between the

platform motion (83, _3' _3' _3' #3 and $3 ) and the platform angular

velocity components is obtained through the application of the Euler angle

transformations to the system platform shown in figt%re 2.2-4. The transfor-

mation equations are given as follows:

_l = 83 cos 43 cos #3 + _3 sin #3 '

_2 = -83 cos 43 sin #3 + _3 cos #3 ' and

_3 = 83 sin _3 + $3 ' where 2.2-12

_i(i = 1,2,3) = angular velocity components of the platform

along ei direction,

83 = pendulation angle in the e 2 e 3 plane,

43 .= pendulation angle in the e I e 3 plane, and

#3 = spin angle about the _3 axis.
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2.3 Parameter Estimation Method

The main object of the parameter estimation method is to determine

the initial system state (io, 3o and ¢3o ) such that the rates ( _ )

obtained from the rate gyros fit (over some time interval 0 <_ t <_ T), in

an optimal sense, those rates ( _ ) predicted from the system model. With

this initial state determined, the instantaneous system state is obtained

simply as the output ( i (t), _ (t) and ¢3 (t)) of the system model. Hence,

the problem is basically one of the parameter deter_tion in which the

initial state parameters ( io , 3o and ¢3° ) play the role of the unknown

parameters. For the purpose of this work, the platform rates will be fit

in a least square sense; i.e., a performance function ( Q ) will be formed

and the initial state determined such that this function is minimized.

The process will be repeated (i.e., io , To and ¢3° will be updated)

every T seconds. Initially T will be set equal to 30 seconds (time required

to acquire a complete radiance profile) although a study (to be conducted

in the future) will be made to determine the minimum T requi_ed such that

the necessary precision and accuracy are satisfied.

In this reset, the function _ is formed as follows:

N 3

j=l i-i j , where

N = number of data points taken in 0 < t < T,

l

= angular velocity computed from system model, and

2.3-1

= angular velocity given by the rate gyros and to be eompaz_d with

_i"

The function % is clearly dependent on the initial state. This initial

state is obtained from the condition that _ take on a minimt_; i.e., by sol-

vine the following optimization problem

min. _ = _(_). 2.3-2

The angular velocity components C_i) are obtained from the transformation

j
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equations 2.2-12 and since 8' _ '¢3 az_ functions of the initial state

and ¢3° ), equation 2.3-2 can be written as

min¢ = ¢(8o' _o' ¢3°) 2.3-3

Since the values of ¢ are obtained numerically (_ is given as a discrete

data point) it will be necessary to employ some direct search technique to

solve the above optimization problem. In genemal_ the algorithm for any

direct search techniques is given as follows

k+l

Xo : _ok + 6% k' (k = 1,2,3,...), where 2.3-4

%.

_o" is the vector of old,,values

6X k is a vector of increments, and
O

Xo-k+l is the vector of improved values.

-J ¢(%k+l_,is found such that < #(Xok). The value of k isThe vector 6X

in_nted until _o converges; i.e., until the norm of 6_o satisfies some

error criteria. FiLnlre 2.3-1 illustrates the application of equation 2.3-4

to minimize ¢ .

There are many direct search techniques for systematically determining

6 _o" After comparing several of these, the direct search method of Hooke

and Jeeves was chosen for the following reasons, i.e., (a) the special

feature in accelerating of distance, so called pattern search, and (b)

this method is already available in subroutine form (5) and was employed

with the process outlined in figure 2.3-1. The discussion of Hooke and

Jeeves direct search algoeithm is presented in section 2.4.

2.4 Hooke and Jeeves - Direct Search Method.

The Hooke and Jeeves [2] method is a simple and powerful univariant

method for finding the :minimum of a function. A modification of the basic

univariant numerical search method, it involves trial explorations and then

• j



I

-,q

17

Input: Initial guess

(Ro),_, and
required accuracy
(ERR).

1
Solve System

Math Model

_ ERR

I
Obtain _X from

direct search

technique

<ERR

output _(t)

Figure 2.3-1 _lockDiaEramIllustrating Process for Attitude

Determinatien of LACATE Mission
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ever_expanding steps, called pattern moves, _n the direction indicated by

the explorations. 1_e method is designed to follow a ridge, so that it does

not suffer from the main disadvantages of the basic univariant approach

which can not effectively cope with ridges or sharp valleys.

The Hooke and Jeeves algorithm consists of two major phases, an

"exploratory search" around the current base point and a "pat-tern search"

in the direction selected for minimization. Figure 2.4-1 is a simplified

informational flow diagram for the algorithm as implemented by Wook [4].

The steps (blocks) in this figure are as follow:

Block 1 The initial estimates for all decision variables (Xi) as well

as initial incremental changes or step sizes (AX i) in the decision variables

are_ provided.

Block 2 The objective function, _(9) is evaluated at the base point

(X) which is the vector of initial guesses (Xi) of the decision variables.

Block 3 An exploratory search (type I) is performed next, i.e.

each decision variable (Xi) is changed in rotation, one at a time, by the

incremental amount (AX i) and the objective function is evaluated at the

new point. If this incremental fails to improve the objective function

then Xi is changed by (-AX i) and the value of _ (_) again evaluated as

before. If the objective function is still not improved then X i is left

unchanged, and the same_ procedure is employed again with Xi+ I. This

process is repeated until all the decision variables (XI, X2,...,X n) haven

been so changed. Figure 2.4-2 illustrates the steps it. an exploratory search

for a two dimensional problem. For each change in the decision variable,

the value of the objective function ¢ (X) is cc_pared with its value at the

previous point. If, upon completion of the exploratory search, none of the

changes yields an improved #(_) (i.e. X1,X2,...,Xn) r_main unchanged , then

the stages in block 7 are performed next; otherwise block 4 is implemented.

Block 4 t_ter completing, the type I exploratory search, the new base
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point is set equal to the final base point obtained f_om block 3.

Block 5 After completing the type I explomatory search and obtaining

a new base point, a "patter_ search" is made. The new value of the decision

variables define a vector, S(see figur_ 2.4-2), that r_present a successful

direction for minimization. A series of pat-tern searches is now made

along this vector, usually in incre2nents of 21s l until _(_) no longer

decreases. The magnitude of the step sizes for the pattern search (i.e.

I in figure 2.4-3) is roughly proportional to the number of successes

p_eviously encountered in each coordinate dimection during _the exploratory

searches for the previous cycle. The success or failure of a pattern

move is not established until after a type II explormtory search (block 6)

has been completed. If _ (X) does not decrease after the %_pe II explora-

tory search, then the pat-tern search has failed and a new type I explorator_y

search (block 3) is made in order to define a new successful direction.

The base point for a pattern search in the case of a two dimensional problem

is illustrated in figure 2.4-3.

Block 6 The type II exploratory search (figure 2.4-3) is made after

a temporary exploration point is obtained from a pattern search. The

chief difference between the %_ype I and type II exploratory searches is the

magnitude of the step sizes _ Xi) . In the case of the type II explormtory

search, AX i is taken as some multiple of the AX i (i.e. Ci(AXi) , see figure

2.4-3) used in the type I exploratory search. This is done in order to

accelerate the search.

Block 7 If the type I exploratory search fails to give a new success-

ful direction, Then the curr_nt IAxil is compared to some preset allowable

tolerance (error input in block i). If IAxll is larger than the allowable

error, then block 8 is implemented. Failure to improve _ (_) for IAxll

smaller than the allowable error indicates that a ic.cal optimum has been
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reached and the search is re,hated.

Block 8 If IAx lis still larger than the pmespeeified error, then

IAxll is reduced gradually until the type I explorator_y seameh can be em_

ploycd to define a new successful direction.

In order to terminate the search, two additional basic tests must be

satisfied. These are described as follows:

(i) "_fter each exploratory and pattern search, the in_ent .in the

objective function IA_I is compared with a prescribed test value. If this

increment is less than the test value, then the exploratory or pattern

sear_ is said to have failed. In this case block 3 or 7 is implemented.

(ii) If IAOI is greater than the prescribed test value, then a test

is made to determine if the objective has increased (a failuz_) or decreased

(a successful search). This second test ensures that the values of the

objective function is always being improved.

The for_c_an coding for the Hooke and Jeeves method has been provided

(with seine minor revision) by M.I.T. Joint Computer Facility. This is given

in appendix B. The program is available in subroutine form with _,amious

parameters in the calling sequence. These p_eters include

(i) the number of decision variables (n),

(ii) the initial guesses of the variables (Xl;_2,...,Xn),

(iii) the _quired accuracy (ERR) ,and

(iv) the allowable number of allowable iterations.

9..5 Test Problem

In order to verify the accuracy and precision of proposed parameter

estimation process (refer section 2.3) it is necessary to employ the process

to a test problem in which the initial state is already known. Preferably,

the test problem model should be identical to the one employed in this

study; i.e. equat._o_s 2.2-1 to 2.2-3. With the initial state known, the
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resulting values of'03 , _3' #3' 63' _3 and $3 which determines the

0

state of t].e platfo_ (as a fuu]ction of time) can be obt-..ned from equations

2.2-9 to 2.2-11. With these, the values of _l' _2 and _3 can be computed

from equation 2.2-12.

The testing process will consist of the following steps.

(a) Assign f._×ed values to the initial state parameters _ (0), _ (0),

'_(0) and _ (0), or equivalently to the unknown constants el,e2,.. .,el2 in

equations 2.2-9 and 2.2-10.

(b) Compute the orientation (state) of the platfor_n 83, 83, _3' _3' ¢3

and $3 as a function of time by employing equations 2.2-9 to 2.2-11.

(e) Determine the values of _'i' _2 and _3 as a function of time by

substituting the results from part (b) into equation 2.2-12.

(d) Employ the results (sampled at various times) from part (e) as

input to the parameter estimation process and utilize this process to

recover the initial state values (ore unknown constants el, e2,..., el2).

13_e accuracy and precision of the process can be determined by com-

paring the results of part (d) to the eorre.sponding assumed values of pa_t

(a). The testing procedure can be repeated fop various sets of input

values. A flow chart illustr_ting the test process is given in figure 2.5-1.
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C_bJ_fER IIl

RESULTS AND CONCLUSIONS

3.i Data for LACATE Mission

Balloon and System Data. Figure 1 i-I illustrates the actual Imcate

balloon system and figure 1.1-2 illustrates the corresponding idealized

system used in this study. The values for the various lengths and masses

of the idealized system are given in table 3.i-i.

The actual design profile of the balloon at float altitude is

illustrated in figure 3 .i-i and the corresponding dimensions are given

in table 3.1-2. Values for (a) mass center_ (b) center of volume, and

(c) moment of inertia (at the mass center) of the balloon were computed and

these values are presented in table 3.1-3 along with other balloon pro-

perties.

Standard Atmosphere Data. Figure 3.1-2 illustrates the U.S. Standard

Atmosphere and the corresponding properties are presented in table 3.1-4.

Table 3.1-5 presents the actual properties of the atmosphere at the float

altitude (47 kilometers).

Math Model Data. The expressions for the element of A matrix of

equations 2.2-1 and 2.2-2 for the system model are given in reference (3).

The numerical values for these elements were computed based on the data

given above and these values are presented in table 3.1-6.

Gyro Data. The platform coordinate axis which were employed fop

referencing the angulam velocity components (as measured by the instl-umen-

ration package) do not coincide with the coordinate axis used in the Euler

angle transformation equation (2.2-12). The relationship between these two

coordinate systems is shown in figure 3.1-3. The resulting transformation

equations which relate the angular velocity components are given as

i i i
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_i is the angular velocity component along the Xi

axis _ and

_i is the corresponding angular velocity component

obtained from the _yro.

The numerical values of the angular velocity components obtained from

the [5_o system are presented in appendix C. Typical plots of the an_lam

velocity components obtained from the gyros are illustrated in fig%u_es

3.1-4 to 3.1-6.

The azimuth angle Cmobtained from the magnetometer was measured

clockwise from magnetic north to the negative X1 platform axis. Howevem,

the angle ¢ in equation 2.2-11 is measured eountez_clockwise from noz_h to

the same negative X1 platform axis. This is illustrated in figure 3.1-7.

The transformation equation _elating these two angles is given as

¢ = 3600 - Cm ' where 3.1-4

¢ is the spin displacement in equation 2.2-11, and

Cm is the spin displacement measured by the magnetometer.

A typical plot of the azimuth angle Cmis shown in figure 3.1-8.

Ei_envalue Problem. The solution to the eigenvalue problem (equation 2.2-8)

was obtained by eaploying the eomputem prop[cam given in appendix A in con-

junction with the coefficients pres_,ted in table 3.1-6. The solution for

the eigenvalues Oi and correspondin K eigenveetors is presented in table 3.1-7.

The magnitude of 0i is equal to the natural frequency of the system.
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TABLE 3.i-i

Idealized LACATE System Properties

r (maximum radius of the balloon) = 249.989 ft.
o

rI (distance from center of mass of balloon shell to mass mI) - 222.091 ft.

r2 (distance from mass mI to _) = 75 ft.

r3 (distance from mass m2 to m 3) = 15 ft.

d (distance from center of mass (C.G.) To center of volume (C.V.)) = 23.712 ft.

mo (mass of balloon shell) = 2850 ibm

m1 (lumped mass) = 135 ibm

(lumped mass) = 135 ibm

m3 (lumped mass) = 375 lbm
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Table 3.1-2

Balloon Profile Data

!HEIGHT-Z

Cft)

.0

10.6

21.9

34.3

46.8

62.9

81.9

104.4

130.7

160.5

193.1

226.6

258.9

287.9

311.7

329.4

340.9

347.4

350.4

351.0

RADIUS-r

(ft)

FABRIC WT.-W Z

(ibs)

.2

32.2

63.8

95.1

122.2

151.7

179.5

204.4

225.4

240.7

248.9

248.8

240.1

223.1

199.4

170.9

139.3

106.4

72.9

.0

.0

42.2

102.8

181.8

267.2

380.7

511.6

658.6

Z'9.7

991.9

1171.3

1353.3

1532.5

1703.9

1862.8

2005.7

2130.2

2315.5

2491.0

2850.0



TABLE 3.1-3

BALLOON PROPERTIES

ro (maximum radius) = 249.989 ft.

Zo (height, corresponded to ro) 209.526 ft.

VH (inflated volume) = 45,378,282 cu. ft.

H (inflated height) = 350.1 ft.

mo (total weight of balloon shell including top cap weight) = 2880 ibs.

Gore length = 674.83 ft.

Surface area = 635,711 sq. ft.

Z1 (distance from bottom apex to the mass center of balloon shell) = 222.091 ft.

Z2 (distance from nadir to eenter of volume) - 198. 379 ft.

t (thickness of balloon shell (s_ato film _ ) = 0.0006 inch.

Iol (moment of inertia at the mass center (C.G.) = 2.622374 X i06 slug-ft 2
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Figure 3.1-2 U.S. Standard Atmospher e (6)
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Table 3.1-4

Genera_ Properties of the U.S. Standard Atmosphere (6)

ALTh

TUD_.,
(m)

TEMPER- LAPSE

ATURE TYPE OF RATE _. PRESSURE

(C) ATMOSPHERE (C/kin) (m/s©c=) _ p(N/m _)

DENSITY

p(kg/m_

0

I 1,000

20,000

32,000.

47.000

52,000

61o000

79,000,

85.743

15.0

Polytroplc

-56.'S

-56.5 Isothcrm=l

Polytropic
• -44.5 "_

Pol.vt roplc

-2.5'

lsoth=rmal

-2.S

Polytropic

-20.5

Polytroplc

-92.5

lsoth=rm.',l

-92.5

|.013 x lO s

-6.5 9.790 1.235

2.263 x 104

0.0 9.759

5.475 x 10 3

+ 1.0 9.727 0.972

8.680 x !0 z -

+2.8 9.685 0.924

1.109 x 10 z

0.0 9.654

5.900 x 10 I

-2.0 9.633 1.0SI

1.821 x 10 !

-4.0 9.592 i.136

1.033

0.0 9.549

1.644 x I0 -1

1.225

3.639 x 10 -t"

8.804 x 10 -z

1.3.23 x i0 "z

1.427 x 10 -3

7.594 x 10 .4

2.511 x !0 "4

2.001 x 10 -s

3.170 x 10 -6

C = temperature in degrees Centiqrade

km = Killometers

n = polytropic exponent

= local acceieration of gravity
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TABLE 3.1-5

Properties of A_mosphe_e 'a_ floa_ 'Al_i_Ude (47 kin)

Poa (density of aim) = 2.78 X i0-6

PoH (density of hell.n) = 3.834 X 10-7

ib

Po (pr_ssu__) = 2.254 _.2

(viscous draE coefficient) = .5

ft
g (Ecavity) = 31.7 _c 2

_a (viscosity of ai_) = 3.57 X 10 -7 sec

1_H (viscosity of helium) = 3.74 X 10 -7 _ .sec.
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TABLE 3.i-6

Coefficients of A Mat'eix [Equation 2.2-1 $ 2.2-2]

all - 2.10463 X 10-2

a21 = -6.08078 X l0"2

asl---s.071_x I0"9

al2 : -3.852_1 X l0-2

a22 = 1.74685

a32 : -7.98370

a13 = 0.0

a23 = -I.17407

a33 : 7.98370
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X3

• X ' "

X3G

Xl(2

X2G

Xi = coor<lina%e system employed fo_ pu_oses of math model.

XiG = gyro coor_linate system.

FiEu_e 3.1-3 Gyro vs Math Model _ate System
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TABLE 3.1-7

Solution for the Eigenvalues f_iand Corresponding Eigenvectors.

i ni 2±

1.296692X10 -1

7.066434XI0 -1

3.038977

9.08376

0.997919

1.000

-7.550639X10 -2

0.937457

1.000

L

6.555123X10 -4

- .156788

1.000
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3.2 Evaluation of Parameter Detenmlnation ProCess

The process for evaluating the attitude determination process by

employing a test problem was discussed in section 2.5. The fo_n of The

math model for the test problem was identical To the system model _iven in

equation 2.2-1 through 2.2-3. Several different sets of unknown constants

(C_i) were assumed and The resulting angular velocity components (_i) were

computed by employing the solution equations 2.2-9 to 2.2-11 and The trans-

formation equation 2.2-12. These values of _i were input to pamameTer

determination process which was then employed to mecover the unknown con-

stants.

Table 3.2-1 gives The results for one Test case. These results indi-

cate that the process is capable of reeoveming the ur_nown constants ci

with good pPeoision. The results prmsenTed in Table 3.2-1 are typical of

Those obtained for other test cases. Hence one can conclude that The process

is suitable for evaluating The attitude of the LACATE system.

During the next stage of the research, the process will be employed

(in conjunction with the math model _iven in eqs. 2.2-1 - 2.2-3) To deter _

mine the angulam velocity components of the platform of the LACATE balloon

system. These values will Then be compared to the actual data in ordem To

evaluate the system model. Results will be presented in the next report.
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APPENDIX A

Fortran Coding for Computation of Eigenvalues and Eigenvectors (E_. 2.2-8).
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APPENDIX B

Fortran Coding for Hooke and Jeeves Direct Search Method.
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